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The findings in this report are not to be construed as an official Department of the Army position
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SYMMETRIC ORIENTATIONS FOR SIMPLEX DESIGNS

1. INTRODUCTION

In many industrial experiments the goal is to determine which process
variables or factors zX1 , X2, ... , zk affect the yield y of the product, or influence
some characteristic of the product. A common approach to such problems is to
approximate the relationship between y and the process factors by a first-order
polynomial,

ky = #o+ )3 (1) C

The coefficients of the polynomial are estimated from data collected during N
experimental runs of the process; the settings of the x's for the N experimental runs
are given by a response surface design. A response surface design for k factors is
written as an Nx k design matrix D. To estimate the coefficients of the polynomial,
a column of 1's to represent the intercept term is appended to the design matrix
and the expanded design matrix X is used to estimate the coefficient vector P3 by
the least-squares formula

b = (X" X)-' X'y, (2)

where b is a vector of estimates for the coefficients and y is an Nx 1 vector of
responses. Tests of statistical significance of the coefficients in (1) are used to
determine which factors have an effect that clearly stands out against the random
variation (background noise) in the data. Another type of analysis is to use the
estimated coefficients to rank the process factors from most important to least
important, without doing statistical tests.

Biles and Swain (1980) and Box and Draper (1987) describe the use of
simplex designs for fitting the first-order model (1) over a spherical region. A



regular simplex is the geometric figure formed by k + 1 equally spaced points in
k-dimensional space; an equilateral triangle is a regular simplex in two dimensions.
In this report, simplex design will mean a design whose dcsign points are the
vertices of a regular simplex. Among the advantages of the simplex design are that

it requires the minimum number of runs to estimate the parameters in the model
(1) and that it estimates the parameters with maximum precision. To obtain
estimates of lack of fit and pure error, no center points can be added to the simplex
design. The expanded design matrix X will then have another column to test for
lack of fit. The lack-of-fit column should be made orthogonal to the other columns
of X by making the value in the lack-of-fit column for the simplex points
proportional to no and the value in the lack-of-fit column for the center points
proportional to - (k + 1).

The statistical properties of a simplex design (orthogonal, minimum variance
estimates of the coefficients and the lack-of-fit test using center points) are not
affected by the orientation of the simplex relative to the coordinate axes. Two
orientations for simplex designs are commonly discussed in the literature. One
orientation allows a simplex design to be developed for any number of factors. The
columns of the design matrix are obtained by scaling a set of simple contrasts to
have the same sum of squares. For j = 1, 2, 3, ... , k, the jth contrast (colhmn of
D) before scaling consists of j ones, -j, and zeros for the remaining values. I call
this orientation of the simplex designs the Helmert orientation because the
(k+ 1)x(k+ 1) expanded design matrix X, when scaled so that X' X=I, is the
orthogonal matrix that represents Helmert's transformation [see, for example,
Kendall (1961, page 12)].

The other widely discussed orientation of simplex designs yields two-level
designs for k=3, 7, 11, .... These designs are best known to statisticians as the
Plackett and Burman (1946) designs. When scaled so '.hat X' X: (k + 1) 1, the
expanded design matrix X is an Hadamard matrix of order k + 1, so I refer to this
orientation of the simplex designs as the Hadamard orientation. These two-level
designs are popular, but they are only available for k = 3, 7, 11, .

2. PROBLEMS WITH THE HELMERT ORIENTATION

Table 1 gives the four-factor simplex design, scaled so that X' X = (k + 1) 1, in
the Helmert orientation.
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Table 1. Four-Factor Simplex Design In Helmert Orientation

Point X1 XI X3 X4

1 1.581 .913 .645 .5
2 -1.581 .913 .645 .5
3 0. -1.826 .645 .5
4 0. 0. -1.936 .5
5 0. 0. 0. -2.

Consider the application of the design in Table 1 to the experimental factois
blender speed (100-300 revolutions per minute, or rpm), mixing time (10-20
minutes), cooking temperature (180-200 degrees), and cooking time (40-60
minutes). Because the design points in Table 1 lie on a sphere of radius 2 in coded
units, a method of applying the design in '.able 1 is to associate the design diameter
of 4 coded units with the range of the experimental factors. Thus the coded range
(-2,2) corresponds to the range of the experimental factors. Because the first
factor in Table 1 has a coded range of (-1.581,1.581), blender speed would vary
over the interval 121-279 rpm rather than the desired 100-300 rpm. By this
method of applying the design, mixing time varies from 10.4 minutes to 17.3
minutes, cooking temperature from 180.3 * to 193.2 *, and cooking time from 40
minutes to 52.5 minutes. Although this method of applying the design is consistent
with the theory of optimal designs, the reduced and asymmetric ranges of the
experimental factors are generally unacceptable to experimenters.

An alternative is to apply the design by scaling the coded factor ranges to the
ranges of the experimental factors, but then the design is no longer a regular
simplex. Box and Draper (1987) mention this point, but do not elaborate. To see
the disadvantages of this method of applying the design, examine the levels of the
experimental factors. For blender speed, the coded levels -1.581, 0, and 1.581
become 100, 200, and 300 rpm; the coded levels -1.826, 0, and .913 of the second
factor become 10, 16.7, and 20 minutes for mixing time. Notice that the
asymmetric range of the second design factor has produced a central level (16.7
minutes) that is not the midpoint of the range (10-20 minutes). For cooking time,
the coded levels -2 and .5 become 40 and 60 minutes, respectively. Now consider a
modified design obtained by replacing the coded levels -2 and .5 of the last factor
by the coded levels -1 and 1; the last column in Table 1 would then have a 1 in
rows 1-4 and a -1 in row 5. Applying the modified design by scaling the coded
factor ranges to the ranges of the experimental factors yields the same design for
the experimental factors as the unmodified design. One possible conclusion is that
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this method of applying a response surface design is simply wrong. Another
conclusion is that each column of the coded design matrix can be rescaled without
affecting the levels of the experimental factors. It can be argued that this method
of applying a response surface design is equivalent to rescaling the columns of the
coded design matrix to cover the same interval. But such a rescaling would change
the geometric and statistical properties of the design. The Helmert orientation of
the simplex designs therefore gives the practitioner the choice of a design without
the desired ranges for the experimental factors or a design whose statistical
properties have been distorted by its method of application.

An alternative to the Helmert orientation of the simplex designs, discussed by
Box and Draper (1987), is the use of the next larger Hadamard ori,,ntation simplex
design. Thus one would use the seven-factor design for four factors by ignoring
three of the design columns. The disadvantage of using the seven-factor design for
four factors is that the seven-factor design requires three more experimental runs
than the four-factor design.

3. A SYMMETRIC ORIENTATION FOR THE FOUR-FACTOR DESIGN

Table 2 gives the four-factor simplex design in a symmetric orientation-
meaning that the coded design factors have the same range and the common range
is symmetric about zero.

Table 2. Four-Factor Simplex Design In New Orientation

Point z1  Xf X3 X4

1 .309 .691 1.309 -1.309
2 .691 1.309 -1.309 .309
3 1.309 -1.309 .309 .691
4 -1.309 .309 .691 1.309
5 -1. -1. -1. -1.

All the coded factors cover the range -1.309 to 1.309, and the design can be applied
by scaling the coded factor range to the ranges of the experimental factors without
the difficulties created by the Helrnert orientation. Note that the design consist of
the cyclic permutations of .309, .691, 1.309, and -1.309 appended by a row of -1's
and is scaled so that X' X = (k -r 1)1. This construction and scaling was used by
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Plackett and Burman (1946) for most of the simplex designs in the Iladamard
orientation.

4. SYMMETRIC ORIENTATIONS FOR OTHER SIMPLEX DESIGNS

For two factors, there is no symmetric orientation of the simplex design:
either the factors have different ranges, say, -a to a and -b to b, or the common
range is asymmetric about zero, say, -a to b. For k = 3 to k = 13, symmetric

orientations of simplex designs can be generated from the numeric values in Table 3
by using the cyclic permutations of the values and appending a row of -l's. The
designs for k=3, 7, and 11 are (equivalent to) the Plackett and Burman (1946)
designs. Notice that the numeric values for odd k have a 1 in the middle position
and the values above and below the middle position are equal in magnitude but
opposite in sign. The designs for odd k therefore have the property that if a factor
occurs at level c, it also occurs at level -c (the 1 in the middle position is balanced
by the -1 in the appended row of -1's). The only disadvantage of the new
symmetric orientations is that the designs require more levels than the Hadamard
orientation. Over the range of k in Table 3 the number of levels required does not
exceed six (seven if center points are used). The new orientations therefore allow a
choice between minimizing the nur-ber of runs or minimizing the number of levels
by going to the next larger Hadamard design. In some applications, the number of
levels may not be relevant, or many levels of the factors may even be desirable [see
Welch, Buck, Sacks, Wynn, Mitchell, and Morris (1992)]. The correctness of the
designs can be verified by showing that X' X = (k + 1) 1.
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